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ABSTRACT: Background: Diffusion-weighted magnetic
resonance imaging (dMRI) examines tissue microstructure
integrity in vivo. Prior dementia with Lewy bodies (DLB)
diffusion tensor imaging studies yielded mixed results.

Objective: We employed free-water (FW) imaging to assess
DLB progression and correlate with clinical decline in DLB.
Methods: Baseline and follow-up MRIs were obtained at
12 and/or 24 months for 27 individuals with DLB or mild
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cognitive impairment with Lewy bodies (MCI-LB). FW
was analyzed using the Mayo Clinic Adult Lifespan Tem-
plate. Primary outcomes were FW differences between
baseline and 12 or 24 months. To compare FW change lon-
gitudinally, we included 20 cognitively unimpaired individ-
uals from the Alzheimer’s Disease Neuroimaging Initiative.
Results: We followed 23 participants to 12 months and
16 participants to 24 months. Both groups had worsening
in Montreal Cognitive Assessment (MoCA) and Movement
Disorder Society-Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) scores. We found significant FW increases
at both time points compared to baseline in the insula,
amygdala, posterior cingulum, parahippocampal, entorhinal,
supramarginal, fusiform, retrosplenial, and Rolandic
operculum regions. At 24 months, we found more wide-
spread microstructural changes in regions implicated in

visuospatial processing, motor, and cholinergic functions.
Between-group analyses (DLB vs. controls) confirmed sig-
nificant FW changes over 24 months in most of these
regions. FW changes were associated with longitudinal
worsening of MDS-UPDRS and MoCA scores.
Conclusions: FW increased in gray and white matter
regions in DLB, likely due to neurodegenerative pathol-
ogy associated with disease progression. FW change
was associated with clinical decline. The findings support
dMRI as a promising tool to track disease progression
in DLB. © 2024 International Parkinson and Movement
Disorder Society.

Key Words: dementia with Lewy bodies; diffusion-
weighted imaging; Lewy body disease; magnetic reso-
nance imaging

Dementia with Lewy bodies (DLB) is a common cause
of late-onset neurodegenerative dementia, accounting for
15–20% of autopsy-confirmed dementias.1,2 Together
with Parkinson disease (PD), DLB is a Lewy body disease
caused by abnormal aggregation of α-synuclein in Lewy
bodies and neurites. Individuals with DLB present with
dementia, rapid eye movement sleep behavior disorder
(RBD), cognitive fluctuations, visual hallucinations, and/or
parkinsonism.2 Mild cognitive impairment (MCI) can pre-
cede the dementia of DLB, termed MCI-LB.3 Executive
MCI and hippocampal preservation on MRI are strong
predictors of progression from MCI-LB to probable DLB
(vs. Alzheimer’s disease [AD]).4,5

Diffusion magnetic resonance imaging (dMRI) is a
promising, non-invasive, in vivo method to evaluate
tissue integrity changes in neurodegenerative disorders,
especially when volumetric changes are not yet detect-
able in early disease stages.6-9 dMRI assesses tissue
integrity based on water diffusion changes within the
brain, which can be influenced by pathology affecting
axons, myelin, cerebrospinal fluid (CSF), neuronal
soma, and dendrites. Water diffusion in the brain can
be isotropic (ie, equal diffusion in all directions as in
CSF and gray matter) or anisotropic (ie, unidirectional
diffusion as in white matter).10 Most dMRI studies in
DLB used a diffusion tensor imaging (DTI) approach
to evaluate white matter microstructure. Fractional
anisotropy (FA, quantifying anisotropic diffusion) and
mean diffusivity (MD, quantifying total diffusivity) are
common diffusion measures in these studies.
Prior DTI studies in DLB have variable results.11

Some found widespread disruptions involving frontal,
temporal, insular, cingulate, parietal, occipital, callosal,
and visual association areas.12,13 Others reported more
localized disruptions in parietal and occipital regions
with sparing of frontal regions.14,15 Several studies
reported consistent disruptions of the inferior longitudinal,
uncinate, superior longitudinal, and inferior fronto-occipital

fasciculi implicated in disruptions of visual association
pathways in DLB.16-20

In the only prior longitudinal DLB dMRI study,
patients with DLB, AD, and healthy controls were
followed for 1 year.21 The study found no longitudinal
change in MD or FA in patients with DLB compared to
controls.
The variable results in DLB from prior dMRI studies

could relate to known limitations of the conventional
DTI approach and different analyses used to assess
structural connectivity. DTI does not consider non-
Gaussian diffusion properties in certain brain tissue
compartments (eg, cell membrane and myelin sheath)
or volumetric effects from extracellular free-water
(FW) (eg, CSF).22 DTI shortcomings include its inability
to evaluate microstructural changes in gray matter,
leading to inaccurate diffusion measures at the gray–
white matter boundaries due to presence of extracellu-
lar FW.6,22 Other considerations are the variable use of
manual region of interest (ROI) selections,12 tract-
specific method,17 voxel-based approaches,13 probabi-
listic tractography,23 or tract-based spatial statistics.14

Here, we applied a robust and established dMRI analy-
sis technique with FW mapping, a two-compartment
model that explicitly separates extracellular diffusing
water from brain tissue. We previously showed FW to
be a viable marker of tracking disease progression in
parkinsonian disorders and AD.9,24,25 For example, stud-
ies showed elevated FW within the posterior substantia
nigra (SN) in PD, compared to more widespread networks
in patients with atypical parkinsonian syndromes.8,25

FW increases longitudinally in the posterior SN in PD, but
not controls, further supporting FW as a promising
progression marker.24 FW increases are linked to neu-
roinflammation and myelin changes in neurodegenerative
disorders.26 We applied a FW dMRI technique to better
characterize diffusion changes in DLB and hypothesized
that FW would be elevated in affected regions in DLB.
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We investigated longitudinal FW changes in individuals
with DLB and cognitively healthy adults, and evaluated
cognitive and motor markers of clinical progression in
relation to dMRI.

Methods
Participants

Participants met criteria for probable MCI-LB3 or
DLB2 and were enrolled in the single-center Mayo
Clinic Longitudinal Imaging Biomarkers of DLB
program (Rochester, MN, USA; enrolled 6/2018–
3/2022). Participants with DLB/MCI-LB were also
recruited as part of the Mayo Clinic Alzheimer
Disease Research Center. Clinical diagnosis was
determined by consensus conference. Participants
meeting criteria for MCI-LB3 had MCI and at least
one core clinical feature (ie, parkinsonism, fluctua-
tions, visual hallucinations, RBD).3 Participants with
DLB met probable DLB criteria from the Fourth
Consortium Criteria.2 Participants were followed
with at least two clinical evaluations with MRI at
baseline and 12 and/or 24 months.
A cohort of cognitively unimpaired individuals was

included from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adniloni.usc.edu) for
comparative analyses. ADNI was launched in 2003 as a
public–private partnership. ADNI’s primary goal is
testing whether serial MRI, positron emission tomog-
raphy (PET), other biological markers, clinical, and
neuropsychological assessment can be combined to
measure MCI progression and early AD. Controls
from ADNI were matched to DLB/MCI-LB partici-
pants based on age, sex, and common cardiovascular
comorbidities. Controls were included only if they
had baseline MRI with follow-up at ≥24 months
(range 2–3 years).

Clinical Evaluation
Participants with DLB/MCI-LB underwent compre-

hensive evaluations.27 Clinical features of DLB were
assessed via history and validated scales. Cognitive fluc-
tuations were assessed using the four-item Mayo
Fluctuations Scale.28 Visual hallucinations were fully
formed occurrences, and not restricted to a single
episode or related to other medical issue/treatment.
History of probable RBD was based on the Interna-
tional Classification of Sleep Disorders-II diagnostic
criteria.29 Parkinsonism was based on neurologic exam-
ination, and the Movement Disorder Society-Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS).30 The
Montreal Cognitive Assessment (MoCA) total score
assessed global cognition.

Standard Protocol Approvals, Registrations,
and Patient Consents

All participants with DLB/MCI-LB and/or their
proxies provided informed consent. The Mayo Clinic
Institutional Review Board (IRB) approved the study
procedures (IRB ID# 17–011339). Data for cognitively
unimpaired individuals from ADNI are publicly avail-
able as part of a multisite longitudinal biomarker
research program, approved by IRBs at all participating
locations.

dMRI Acquisition
All participants with DLB/MCI-LB underwent 3 T

MRI with a 64-channel phased array head coil
(Siemens). Diffusion scans were acquired with the
following parameters: TR= 3400–4300 ms, TE= 71–99 ms,
multi-shell acquisition (b-value= 0, 500, 1000, 2000 mm2/s),
angular resolution of 108 directions, in-plane voxel size
of 2–2.26 mm in the x-dimension and 22.26 mm in the
y-dimension, and slice thickness = 2 mm. We extracted
the imaging data with b-value = 0, 1000 for FW imaging
analyses using the algorithm from prior work31; two
shells were used to harmonize analyses for DLB and con-
trols (as non-multi-shell images were obtained prior to
ADNI3). MRIs for controls were obtained from the
ADNI databases Phase 2 and 3 (adni.loni.usc.edu). Axial
diffusion weighted images (with or without multiband)
were acquired on 3 T scanners (Siemens = 18, GE = 4,
Philip = 18) with a whole-brain echo planar sequence with
the following parameters: gradient directions = 31–61,
b-value = 1000, TR = 3400–16,700 ms, TE = 55–105 ms,
in-plane voxel size of 0.9–2.7 mm in x-dimension and
0.9–2.7 mm in y-dimension, and slice thickness = 2 or
2.7 mm (no gap).

dMRI Data Analysis
The primary outcome was FW across 122 ROIs.

dMRIs were processed with image processing tools
from the FMRIB Software Library (FSL32,33), Advance
Normalization Tools (ANTs),34 and custom UNIX shell
scripts. The dMRI processing pipeline was completely
automated, and results were consistent with prior
work.8,9 The normalization and image processing
pipeline used was previously validated in the Appendix
from the Archer et al. study.8 Scans were corrected for
distortions due to eddy currents and head motion with
affine transformations.33 The gradient directions were
subsequently rotated to reflect these corrections, and
non-brain tissue regions were removed from the
scans.32 DTIFIT was used to calculate b0 and FA
images. Intermediate outputs were visually inspected to
ensure absence of structural abnormalities (eg, stroke,
tumor) or any anomalies with generated FW maps,
such as poor normalization.8 FW maps were
calculated using custom written MATLAB R2020b
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(The Mathworks) codes.24,31 This code implemented a
minimization procedure that fits a bi-tensor model, quanti-
fying the fractional volume of FW in each voxel (ie, FW
maps), as previously described.24 The bi-tensor model
predicts the signal attenuation in the presence of FW
contamination. It is the sum of attenuations from two
compartments: one modeling FW, and a second tissue
compartment modeling water molecules in the vicinity of
tissue membranes.24 For the normalization pipeline, we
used rigid alignment and Symmetric Normalization (SyN)
in ANTs software using a FA map as the template image,
which was created by averaging 100 Human Connectome
Project (HCP) (http://www.humanconnectomeproject.org)
subjects in Montreal Neurological Institute (MNI) space.
The FA map image was linearly registered to a mean
HCP FA template, followed by a nonlinear transforma-
tion using SyN. The implementation of this technique is
consistent with prior work7-9,24 and is validated in the
Appendix from the Archer et al. study.8

ROIs
ROIs included gray and white matter, and were

created based on the atlas from the Mayo Clinic Adult
Lifespan Template (MCALT; https://www.nitrc.org/
projects/mcalt/).35 The MCALT was specifically
designed for analysis of MRIs of adults aged 30+ years.
Recent studies on neurodegenerative disorders, including
DLB, have used the MCALT.36,37 Diffusion measures
were calculated separately for left and right hemispheric
ROIs in the MCALT template.

Statistical Methods
Longitudinal change for demographic and clinical

variables was assessed with Pearson’s χ2, independent,
or paired t-tests as appropriate. Mean change from
baseline to follow-up in FW maps for participants with
DLB/MCI-LB was calculated for each ROI using paired
t-tests. Significant ROIs were corrected for multiple
comparisons using the false discovery rate (FDR)
method38 (pfdr < 0.05). To assess FW change longitudi-
nally in cognitively unimpaired individuals, we applied
paired t-tests and within-subject ANCOVA with
repeated measures controlling for imaging site. We then
conducted a one-way ANCOVA to identify ROIs with
significant differences between DLB/MCI-LB and con-
trols based on FW change over 2 years, controlling for
age, baseline FW, and imaging site. We selected the
one-way ANCOVA model as it accounts for the study
design with multisite controls and relies on the computed
FW change to focus on longitudinal change. Secondary
analyses with linear regressions were performed to deter-
mine the association of longitudinal change in diffusion
measures and baseline FW, with clinical disease progres-
sion based on change in MoCA and MDS-UPDRS scores.
Only the regions with significant changes in diffusion

measures for FW (at 12 or 24 months follow-up in
DLB/MCI-LB) were entered in forward linear regression
models. Statistical analyses were performed in IBM SPSS
version 28.0.

Results
Demographics and Clinical Assessment

Twenty-three individuals (n = 3 MCI-LB, n = 20
DLB; mean age 69.3 � 9.5 years; 95% male) completed
evaluations at baseline and 12 months. Sixteen individ-
uals (n = 2 MCI-LB, n = 14 DLB; mean age
67.5 � 9.3 years; 100% male) completed evaluations at
baseline and 24 months (Table 1). Twelve participants
had follow-ups at 12 and 24 months. Twenty cognitive
unimpaired individuals (mean age 70.2 � 2.1 years;
100% male) completed evaluations at baseline
and ≥ 24 months (Table 1).
MoCA and MDS-UPDRS (Total, Part III) scores sig-

nificantly declined from baseline to 12 months and
24 months in the DLB/MCI-LB cohort (all P < 0.05;
Table 2). Hoehn and Yahr stage did not differ for either
interval. MoCA scores did not change significantly in
controls (Table 2).

FW Imaging Changes at 12 Months
in DLB/MCI-LB

FW increased from baseline to 12 months for
participants with DLB/MCI-LB in the left pallidum, left
amygdala, left entorhinal cortex, bilateral insula, bilateral
posterior cingula, left parahippocampus, bilateral Rolandic
operculum, left fusiform, right retrosplenial cortex,
right lingual gyrus, and right supramarginal gyrus (all
pfdr < 0.05) (Table 3).

Greater Network of FW Imaging Changes at
24 Months in DLB/MCI-LB

Apart from the right lingual gyrus and left pallidum,
the same ROIs that showed FW increases in
DLB/MCI-LB from baseline to 12 months were also
identified at 24 months. Specifically, the left amygdala,
bilateral posterior cingula, left entorhinal cortex, left
parahippocampus, bilateral insula, left fusiform, right ret-
rosplenial cortex, bilateral Rolandic operculum, and right
supramarginal gyrus were associated with significant FW
increases from baseline to 24 months (pfdr < 0.05)
(Table 3, Fig. 1). Additional ROIs had significant FW
increases at 24 months only: anterior and posterior SN,
pallidum, putamen, mid cingulum, hippocampus, inferior
frontal, superior temporal, and thalamus regions
(Table 3, Fig. 2).
In cognitively unimpaired individuals, there were no

significant changes surviving FDR correction in any
ROI (baseline to ≥24 months) (Table S1). There was
no significant effect of imaging site. To compare
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FW change longitudinally between DLB/MCI-LB and
control groups, we focused on ROIs with significant
FW change identified in DLB/MCI-LB from baseline to
24 months. Many of the same ROIs showed significant

effect of diagnosis on FW change after controlling for
age, baseline FW, and imaging site (Table S2). These
include middle and posterior cingula, inferior frontal,
insula, parahippocampus, supramarginal, and Rolandic

TABLE 1 Patient characteristicsa

Characteristic
DLB with 12 months
follow-up (n = 23)

DLB with 24 months
follow-up (n = 16)

Cognitively unimpaired
with ≥24 months follow-up

(n = 20)

Age at baseline visit, y (SD) 69.3 (9.5) 67.5 (9.3) 70.2 (2.1)

Male, n (%) 22 (96) 16 (100) 20 (100%)

Education, y (SD) 15.6 (4.0) 15.5 (3.4) 16.6 (2.0)

Cholinesterase inhibitor, n (%) 14 (61) 8 (50) N/A

Levodopa use at baseline and/or follow-up, n (%) 10 (43.4) 8 (50) N/A

Primary clinical diagnosis, n (%)

MCI-LBb,c 3 (13) 2 (13) N/A

DLB 20 (87) 14 (87) N/A

Medical comorbidities, n (%)d

History of smoking 6 (26.1) 2 (12.5) 0

Hypertension 5 (21.7) 4 (25) 8 (40)

Hyperlipidemia 9 (39.1) 4 (25) 4 (20)

History of stroke 1 (4.3) 0 0

Abbreviations: DLB, dementia with Lewy bodies; y, years; SD, standard deviation; N/A, not applicable; MCI-LB, mild cognitive impairment with Lewy bodies.
aTwelve patients had follow-up at both 12 months and 24 months. Most participants were non-Hispanic (91% in 12-month cohort; 100% in 24-month cohort), and White
(100% in 12-month cohort; 94% in 24-month cohort). All cognitively unimpaired individuals were non-Hispanic and White.
bAdditional demographic/clinical information for subjects with MCI-LB with 12 months follow-up (n = 3): mean age 62 � 15 years, 100% male, mean education
15.3 � 3.1 years, 100% taking cholinesterase inhibitor, 0% taking levodopa, mean baseline total Montreal Cognitive Assessment (MoCA) score 20 � 7, mean baseline total
Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) score 40 � 13.
cAdditional demographic/clinical information for subjects with MCI-LB with 24 months follow-up (n = 2): mean age 80 � 7 years, 100% male, mean education
15.0 � 4.2 years, 50% taking cholinesterase inhibitor, 50% taking levodopa, mean baseline total MoCA score 17 � 4, mean baseline total MDS-UPDRS score 36 (missing
baseline MDS-UPDRS score for 1 subject).
dCognitively unimpaired individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were matched to DLB/MCI-LB participants (24 months) based on age, sex,
and common cardiovascular comorbidities (eg, history of smoking, hypertension, hyperlipidemia, and prior stroke; all P > 0.05).

TABLE 2 Clinical changes from baseline to 12 or 24 months

Clinical scale Baseline

DLB/MCI-LB
at 12 months

(n = 23) P-value Baseline

DLB/MCI-LB
at 24 months

(n = 16) P-value Baseline

Cognitively
unimpaired with
≥24 months
follow-up
(n = 20) P-value

MoCA, total (SD) 18.3 (5.5) 16.7 (6.0) 0.038 18.1 (4.4) 14.7 (6.8) 0.008 26.2 (2.2) 26.3 (2.7) 0.45

MDS-UPDRS,
total (SD)

40.6 (22.9) 51.5 (27.6) 0.014 38.9 (23.2) 50.3 (17.7) 0.037 N/A N/A N/A

MDS-UPDRS-
Part III (SD)

20.4 (13.1) 24.8 (15.5) 0.049 19.3 (13.0) 27.0 (12.9) 0.004 N/A N/A N/A

Hoehn & Yahr,
score (SD)

1.5 (1.1) 2.0 (1.0) 0.069 1.4 (1.1) 1.9 (1.0) 0.14 N/A N/A N/A

Note: Bold indicates denotes statistical significance.
Abbreviations: DLB/MCI-LB, dementia with Lewy bodies/mild cognitive impairment with Lewy bodies; MoCA, Montreal Cognitive Assessment; SD, standard deviation;
MDS-UPDRS, Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale; N/A, not applicable.
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operculum regions. Regions with significant FW change at
12 and/or 24 months in DLB/MCI-LB that did not exhibit
significant group effect included the SN, amygdala,

hippocampus, putamen, pallidum, fusiform, retro-
splenial, superior temporal, thalamus, and precuneus
(Tables 3 and S2).

TABLE 3 Free-water changes over 12 to 24 months

Significant ROIs at
12 and 24 months

Change in FW:
12 months–baseline

(mean, SD)
FDR-corrected

P-value

Change in FW:
24 months–baseline

(mean, SD)
FDR-corrected

P-value

Amygdala_L 0.011 (0.015) 0.026 0.025 (0.021) 0.004

Cingulum_Post_L 0.012 (0.015) 0.022 0.021 (0.012) <0.001

Cingulum_Post_R 0.010 (0.013) 0.026 0.021 (0.018) 0.004

Entorhinal_Cortex_L 0.017 (0.027) 0.050 0.022 (0.027) 0.023

Parahippocampus_L 0.009 (0.012) 0.022 0.022 (0.022) 0.011

Insula_L 0.007 (0.009) 0.022 0.014 (0.015) 0.011

Insula_R 0.008 (0.010) 0.022 0.019 (0.017) 0.006

Fusiform_L 0.007 (0.010) 0.026 0.016 (0.017) 0.012

Retrosplenial_Cortex_R 0.007 (0.008) 0.022 0.021 (0.016) 0.004

Rolandic_Oper_L 0.013 (0.010) <0.001 0.025 (0.026) 0.011

Rolandic_Oper_R 0.010 (0.013) 0.022 0.022 (0.019) 0.005

Supramarginal_R 0.005 (0.008) 0.049 0.012 (0.013) 0.011

Significant ROIs at
24 months only

Change in FW:
24 months–baseline (mean, SD)

FDR-corrected
P-value

SN_Ant 0.024 (0.022) 0.007

SN_Post 0.029 (0.024) 0.004

Putamen_R 0.015 (0.017) 0.022

Pallidum_R 0.024 (0.032) 0.041

Amygdala_R 0.020 (0.024) 0.022

Cingulum_Mid_L 0.025 (0.01) <0.001

Cingulum_Mid_R 0.014 (0.010) 0.001

Hippocampus_L 0.016 (0.018) 0.019

Hippocampus_R 0.016 (0.013) 0.004

Parahippocampus_R 0.018 (0.020) 0.017

Temp_Sup_R 0.018 (0.021) 0.020

Heschl_R 0.014 (0.016) 0.020

Frontal_Inf_Oper_L 0.016 (0.021) 0.035

Frontal_Inf_Orb_R 0.016 (0.020) 0.026

Fusiform_R 0.013 (0.016) 0.024

Precuneus_R 0.016 (0.016) 0.011

Retrosplenial_Cortex_L 0.022 (0.018) 0.004

Thalamus_R 0.011 (0.0112) 0.012

Note: There were two regions with significant FW change from baseline to 12 months (right lingual gyrus with mean FW change 0.010 � 0.015 [pFDR = 0.040] and left palli-
dum with mean FW change 0.009 � 0.012 [pFDR = 0.022]), but no corresponding significant FW change from baseline to 24 months. Bold indicates denotes statistical
significance.
Abbreviations: ROI, region of interest; FW, free-water; SD, standard deviation; FDR, false discovery rate; L, left; Post, posterior; R, right; Oper, operculum; SN, substantia
nigra; Ant, anterior; Mid, middle; Sup, superior; Inf, inferior; Orb, orbital.
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Changes in Diffusion Measures Associated
with DLB Clinical Progression

Exploratory forward linear regression analyses
showed FW changes associated with clinical progres-
sion at 12 and 24 months in participants with
DLB/MCI-LB. FW change was associated with a
change in MDS-UPDRS total score from baseline to
12 months, with the final model including right insula
(adjusted R2 = 22.2%, P = 0.024). Change in FW was
also associated with a change in MDS-UPDRS total
score from baseline to 24 months, with the final model
including right amygdala, anterior SN, left fusiform,
and left inferior frontal operculum (adjusted
R2 = 93.5%, P = 0.003). FW change was associated
with a change in MDS-UPDRS-Part III motor score
from baseline to 24 months only, with the final model
including the right amygdala (adjusted R2 = 0.679,
P < 0.001). FW change was associated with a change in
MoCA score from baseline to 24 months only, with the
final model including the left inferior frontal operculum
(adjusted R2 = 42.6%, P = 0.004).
When evaluating potential associations between

baseline FW and longitudinal clinical progression in
DLB/MCI-LB, baseline FW was associated with a
change in total MoCA score from baseline to 12 months
only, with the final model including right posterior cin-
gulum (adjusted R2 = 22.4%, P = 0.026). Baseline FW

was associated with change in MDS-UPDRS-Part III
motor from baseline to 24 months only, with the final
model including left inferior frontal operculum, right
Heschl gyrus, and posterior SN (adjusted R2 = 78.7%,
P = 0.017).

Discussion

We found significant longitudinal FW increases in
12 ROIs at both 12 and 24 months’ follow-up in indi-
viduals with DLB/MCI-LB. Additionally, we saw more
ROIs with significant FW changes at 24 months, not
detected at 12 months’ follow-up. Many of these
regions showed significant group effect at 24 months
when comparing DLB/MCI-LB versus controls. We also
found FW changes, and baseline FW, from selected
ROIs in DLB/MCI-LB that were associated with clinical
progression in MoCA and MDS-UPDRS scores.
Together, these results provide evidence of longitudinal
microstructural changes in DLB, seen as early as the
12 month follow-up. Furthermore, these diffusion
changes are associated with cognitive and motor decline
over 2 years.
Our results differ from the prior DTI-based longitudinal

DLB study by Firbank et al.21 where no MD or FA white
matter changes were seen over 12 months. Notably, our
study differs in study duration (24 vs. 12 months),

FIG. 1. (A–L): Regions of interest (ROIs) in dementia with Lewy bodies/mild cognitive impairment with Lewy bodies (DLB/MCI-LB) with significant
increase in free-water (FW) from baseline to 12 (blue) and 24 months (orange). For each significant ROI, the corresponding plot on the left shows mean
FW changes for each follow-up time point with standard error bars; and the corresponding plot on the right shows FW changes for each participant
from baseline to 12 and 24 months. [Color figure can be viewed at wileyonlinelibrary.com]
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approach (bi-tensor model vs. DTI), analysis (our custom
dMRI pipelines8,9,24 and MCALT use vs. tract-based
spatial statistics), and primary outcome measures (FW vs.
MD, FA). Considering that partial volume effects from
extracellular FW can contaminate DTI analysis of
microstructural changes, our FW approach may be more
sensitive in detecting subtle microstructural changes
involving gray matter regions.39

The consistent FW increases in DLB/MCI-LB cohorts
involving the insula, amygdala, posterior cingulum,
parahippocampal, entorhinal, supramarginal, fusiform,
retrosplenial, and Rolandic operculum regions at both
12 and 24 months’ follow-up suggest that microstructural
changes may occur in these regions earlier in the disease
course of DLB. Except for the amygdala, retrosplenial

cortices, and fusiform, all the aforementioned regions
were significant in both within-group (DLB/MCI-LB) and
between-group models (DLB/MCI-LB vs. controls, base-
line to 24 months). While the exact biological underpin-
nings of FW are still under investigation, FW changes in
parahippocampal gyrus, amygdala, and cingulate gyrus
align with prior DLB neuropathological studies showing
increased α-synuclein burden in these limbic regions.40

Similarly, early FW changes involving occipitotemporal
and inferior temporal regions may correspond to underly-
ing α-synuclein burden in neocortical regions of patients
with DLB.40

From prior structural MRI studies, insular atrophy is
consistently reported in prodromal DLB.41 Cortical
thinning in the right anterior insula may be a potential
marker for early DLB42 given its involvement in
integrating autonomic, somatosensory, and cognitive
information to guide behavior43 (ie, relevant to cogni-
tive slowing and attentional deficits in DLB). Significant
FW increases in parahippocampal regions with earlier
disease course is consistent with pathology studies
showing disproportionate involvement of this region.40

A prior study showed association of cortical thinning of
parahippocampal and temporal pole regions with
cognitive measures in DLB, but not AD.44 Particularly
relevant in DLB, early parahippocampal involvement
may relate to its role in visuospatial processing.45

Microstructural changes could reflect microglial activa-
tion/neuroinflammation or neurodegeneration seen in
these regions.
Involvement of the visual association regions aligns

with similar areas of the brain that were previously
associated with microstructural changes in DLB.13,23,46

The basal forebrain, inferior parietal (eg, supramarginal
gyrus), and parahippocampal regions are highly inter-
connected and likely play a role in visual attention, and
clinical symptoms of cognitive fluctuations and visual
hallucinations.11,16,46 Microstructural disruptions in
the cingulum have been reported in prior studies,23 and
in our study we found early significant FW increases
involving the posterior cingulate gyrus. We also
detected longitudinal FW changes involving the
precuneus at 24 months, though this significant within-
group FW change was not seen when compared with
the control group. This suggests the change in the
precuneus for DLB may not exceed the variance and
mean change of the control group. Characteristically in
DLB on FDG-PET/SPECT scans, we expect relative
sparing in posterior cingulate regions compared to
cuneus/precuneus.2 Additional study should investigate
potential differential microstructural changes in the
posterior cingulate versus cuneus/precuneus regions.
Early involvement of the entorhinal cortex aligns

with the hypothesis that DLB preferentially affects
brain regions with dense cholinergic inputs.27,47 In a
longitudinal structural MRI study following patients

FIG. 2. T1-structural magnetic resonance imaging (MRI) (axial) showing
larger network of regions of interest (ROIs) in dementia with Lewy bod-
ies/mild cognitive impairment with Lewy bodies (DLB/MCI-LB) identified
with significant free-water (FW) increases at 24 months (3D paired t-test
for baseline to 24 months, right), compared to 12 months (3D paired
t-test for baseline to 12 months, left). Overlay is displaying the mean
difference in FW at P < 0.001 (uncorrected). The coordinate system is in
Montreal Neurological Institute (MNI) space (with a left posterior inferior
orientation). Consistent longitudinal FW increases at both time points
were seen in amygdala, posterior cingulum, entorhinal cortex,
parahippocampus, insula, fusiform, retrosplenial cortex, Rolandic oper-
culum, and supramarginal gyrus regions. At 24 months, additional FW
increases were seen in the pallidum, putamen, mid cingulum, hippo-
campus, inferior frontal, superior temporal, and thalamus regions. [Color
figure can be viewed at wileyonlinelibrary.com]
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with MCI-LB over a median of 1.3 years, significant
atrophy in the nucleus basalis of Meynert was noted at
baseline in MCI-LB versus controls, with more longitudi-
nal atrophy including the entorhinal and parahippocampal
gyri.27 Atrophy progression occurred in regions with sig-
nificant cholinergic innervation and aligned with clinical
progression.27 While we similarly found that FW changes
in some ROIs correlated with clinical decline, we caution
over-interpretating our exploratory regression analyses
given the large numbers of significant ROIs and relatively
small sample sizes.
Early FW changes involving the Rolandic operculum

is a novel finding. Hypometabolism in the Rolandic
operculum may play a role in sleep disturbance and
RBD associated with DLB,48 but more research is
needed.
We identified more widespread cortical and sub-

cortical involvement at 24-month follow-up in
DLB/MCI-LB, involving the SN, pallidum, putamen,
mid cingulum, hippocampus, inferior frontal, superior
temporal, and thalamus. Changes in the mid cingulum
and inferior frontal regions were significant in both
within-group and between-group models. Additional
studies should evaluate potential differential micro-
structural changes within all subregions of the cingu-
late.23 Significant FW increases involving inferior
frontal regions are consistent with prior fMRI and
voxel-based morphometry studies in DLB. Structural
changes in these regions may be associated with
visuoperceptual impairments and visual hallucinations
in DLB.49

Some of the regions with significant FW change at
24 months in the within-group (DLB/MCI-LB) but not
between-group (DLB/MCI-LB vs. controls) approaches
require further investigation. Basal ganglia and SN had
significant FW changes in DLB/MCI-LB, but not when
compared to controls. While basal ganglia atrophy is
reported in DLB, the association between the degree of
atrophy/neurodegeneration in the striatum and clinical
parkinsonism is unclear.50 Dopaminergic cell loss is
often seen in the SN of patients with DLB, but this may
be variable especially earlier in the disease course with
α-synuclein distribution patterns (eg, brainstem-
predominant, neocortical, limbic). The FW change we
found in SN could be clinically relevant in DLB, as the
posterior SN at baseline was associated with
MDS-UPRS-III decline over 24 months, suggesting that
FW changes prior to the baseline visit may predict
long-term motor changes. Lack of hippocampal
involvement (based on the between-group analysis) is
not surprising, given that preservation of medial tempo-
ral regions and hippocampi are indicative biomarkers
for DLB.2 For some patients, hippocampal involvement
reflects frequent AD co-pathology in DLB.51

This study has several limitations. Cohort sample
sizes were modest, and MCI-LB was under-represented.

However, our ability to detect significant diffusion
changes with FDR correction even with a smaller
cohort at 24 months argues for the robustness of the
significant ROIs. Several regions (eg, SN, amygdala, ret-
rosplenial cortex, fusiform) had significant longitudinal
FW change in DLB/MCI-LB, but not when comparing
DLB against controls, potentially due to age-related
effects. Alternatively, the FW changes seen in these
regions in DLB did not exceed the variance and mean
change of controls. While controls were from a multi-
site database (ADNI), the same scanner was used for
each control at all time points; additionally, we
accounted for imaging site as a covariate in our
ANCOVA model. We did not have fluid biomarkers or
neuropathology to confirm Lewy body disease and
evaluate co-pathologies. Future studies could investigate
co-occurring cerebrovascular burden and concurrent
tau/Aβ markers, and include a longitudinal AD cohort
for comparison. We used a cognitive screening measure
(MoCA) to assess global cognition. More detailed
neuropsychological testing could further inform brain
regions involved in DLB, though the optimal clinical
outcome measures in DLB remain unclear.52,53 Finally,
our current study has limited generalizability due to
inclusion of predominantly male, White, non-Hispanic
individuals.
In summary, we applied a novel bi-tensor dMRI

model to evaluate FW longitudinally in patients with
DLB/MCI-LB over two time points. We identified a
consistent set of regions associated with microstructural
changes involving the insula, amygdala, posterior cin-
gulum, parahippocampal, entorhinal, supramarginal,
fusiform, retrosplenial, and Rolandic operculum regions
over 12 and 24 months in DLB/MCI-LB. With longer
follow-up, we found more widespread microstructural
changes in regions implicated in visuospatial processing,
motor, and cholinergic functions. Our results support
FW imaging as a promising noninvasive and clinically
relevant imaging marker that is sensitive to longitudi-
nal disease progression in DLB. Replication in other
datasets is needed before FW imaging is used as a bio-
marker for tracking DLB progression and potentially
as a clinical trial endpoint for disease-modifying
therapy.
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